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Abstract

The temperature transient response of a single-phase fluid and a wall in a heat exchanger is investigated for when the

other constant temperature fluid is subjected to a step change in temperature or when the single-phase fluid is subjected

to a step change in mass flow rate. The dynamic behavior of the heat exchanger is approximated by an integral method

assuming that the single-phase fluid temperature distribution can be expressed by a combination of the initial and final

temperature distributions and a determined time function. The results are validated by comparison against numerical

simulations. Excellent agreement is obtained.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When heat exchangers are part of larger industrial

processes and systems, transient operation can occur

frequently, and the transient response (outlet conditions)

of the heat exchanger can affect overall system perfor-

mance. For example, if the flow from a heat exchanger

were feeding a chemical reactor, a time varying output

from the heat exchanger would affect the reactor output.

Proper design of the process control system requires that

the heat exchanger transient performance (outlet con-

ditions) be predicted. Likewise, how heat exchanger

tubes respond to temperature transients has an effect on

the thermal stresses created. To predict those stresses,

the temperature distribution along the length of the

tubes must be known as a function of time.

Most of the studies reported in the literature devel-

oped the transient response of heat exchangers after a

step change of temperature [1–4] or mass flow rate [4–8]

by solving the system�s governing differential equations.

Because of the presence of partial derivatives, these

equations either have no exact analytic solution or the

analytic solution is extremely complicated and difficult

to use (e.g., [4,8]). Although numerical methods are most

often used to solve the differential equations (e.g., [1,9]),

they have problems with convergence, stiffness, numer-

ical diffusion, and stability. Methods using conventional

transforms (e.g., Laplace transforms [3,10]) lead to

problems with inversion of the solution from the trans-

formed domain to the original domain of the indepen-

dent variable(s); numerical inversion of the Laplace

transform must be used, which has the same problems as

previously mentioned. Reynolds [11] used an integral

method to get an implicit solution for a specialized sit-

uation of the cooling of a heat exchanger wall and one

single-phase fluid; however, the implicit equation is not

easily used.

Explicit equations are desired to describe the tran-

sient response of a heat exchanger. Lachi et al. [6] used a

two-parameter method including a time constant and a

time lag to characterize the behavior of a double pipe

and one pass shell-and-tube heat exchanger when a

sudden change of the flow rate was imposed at one of

the two inlets. Abdelghani-Idrissi et al. [7] described the

temperature transient response along a counterflow heat

exchanger with two single-phase fluids by a first-order

response with a time constant when mass flow rate was

subjected to a sudden change. Their analytic solutions

are explicit, and their agreement with experimental data
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is good. However, two quantities, the time lag in Ref. [6]

and the characteristic time constant in Ref. [7], both

depend on additional experimental or numerical infor-

mation.

Shah [12] and Kays and London [13] referred to so-

lutions for transient heat exchanger response in several

specific situations. Only the outlet temperature response

was given, and the fluid temperature responses within

the exchanger and the wall temperature responses were

not presented. Some of solutions were obtained nu-

merically, and others were obtained by electromechani-

cal analog experiments. Several solutions were obtained

from analysis but were valid only for some limited sit-

uations; either no explicit equations were given or no

general explicit solutions were presented.

In this paper, an integral method is used to describe

the transient behavior of a heat exchanger, which has

one fluid with a constant temperature and the other fluid

remains single phase. Because flow arrangement be-

comes irrelevant when one of the fluids in a heat ex-

changer has a constant temperature, the results in this

paper are applicable to counterflow, parallel flow, cross-

flow, or any other heat exchanger. These types of heat

exchangers are widely used (e.g., condensers, evapora-

tors, intercoolers, pre-coolers, and liquid-to-gas heat

exchangers). In such heat exchangers, the heat capacity

rate of one fluid often is much larger than that of the

other fluid, so that the temperature of the fluid with the

larger heat capacity rate can be approximated as con-

stant throughout the exchanger. Two cases are consid-

ered: (1) when the constant temperature fluid undergoes

a step change in temperature, and (2) when the single-

phase fluid undergoes a flow rate step change. Com-

pared to previous analyses, this method is more easily

understood, the explicit solution is easily used, and no

parameters depend on additional experimental or nu-

merical information.

The present analysis provides the time varying fluid

and tube wall temperatures over the whole length of a

heat exchanger. These results can be used, for example,

in the design and operation of the control system of a

larger system in which the heat exchanger is only one

part, in a heat exchanger mechanical design if the tran-

sient thermal stresses in the tubes are required, and in

prediction of the transient overall heat exchanger per-

formance (e.g., time required to change from one steady-

state operating condition to another).

2. Governing equations

Consider the heat exchanger shown in Fig. 1. One

fluid remains at a constant temperature (e.g., a boiling

or condensing process); another fluid remains a single-

phase fluid, and its inlet temperature remains constant at

all times. Note that Shah [12] studied transient behavior

for such heat exchangers by summarizing several au-

thors� methods. Rizika [14] obtained an exact solution,

but it was valid only for a time period less than or equal

to the residence time of the single-phase flow and only

for a liquid flow. London et al. [15] presented analytical

solutions for two limiting cases, for when the ratio of the

Nomenclature

A heat transfer area (m2)

Ax cross-sectional flow area (m2)

C1–C3 coefficients

D1–D3 coefficients

cp specific heat (kJ/kgK)

f , f 0, g, g0 function of time

L heat exchanger length (m)

m mass (kg)

_mm mass flow rate (kg/s)

N1 ðmwcpwÞ=ðmscpsÞ
N2 ðacAcÞ=ð _mmcpsÞ
N3 ðasAsÞ=ð _mmcpsÞ
NTU number of transfer units

Nu Nusselt number

Pr Prandtl number

Re Reynolds number

t time (s)

tr residence time (s)

T temperature (K)

u velocity (m/s)

x position (m)

Greek symbols

a heat transfer coefficient (W/m2 K)

k; e interim parameter

c _mm1= _mm0

q density (kg/m3)

Subscripts

c constant temperature fluid

s single-phase fluid

in inlet

out outlet

w wall

Superscripts

0 initial condition

1 final condition

� dimensionless form
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thermal resistance on the two sides of the heat exchanger

was equal to 0 or 1; other solutions were obtained

numerically or by electromechanical analog experi-

ments. Thus, there are no general explicit solutions for a

step change in the temperature of constant temperature

fluid, and there are no solutions for a step change in the

mass flow rate of the single-phase fluid.

Therefore, in the present paper, two transient heat

exchanger situations are considered. The first one deals

with a temperature step change in the constant temper-

ature fluid, and the second one deals with a step change

in the single-phase fluid mass flow rate. The problem is

to find the transient single-phase fluid and wall tem-

perature distributions along the whole pipe after the step

change.

For this analytic model, the following assumptions

are made: the temperatures of the single-phase fluid and

the wall are only functions of time t and position x; there
are no thermal energy sources within the single-phase

fluid or the wall; longitudinal and transverse heat con-

duction within the wall and the fluid are neglected; the

convective heat transfer coefficient on each side of the

heat exchanger and the thermal properties of the fluid

and the wall are constant. Based on the above assump-

tions, energy balances on a differential element in the

exchanger wall and fluid, respectively, are:

mwcpw
oTw
ot

þ acAcðTw � TcÞ þ asAsðTw � TsÞ ¼ 0 ð1Þ

mscps
oTs
ot

þ _mmcpsL
oTs
ox

¼ asAsðTw � TsÞ ð2Þ

Eqs. (1) and (2) are rewritten using the following di-

mensionless variables and parameters:

T � ¼ T � Ts;in
T1
c � Ts;in

; x� ¼ x
L
; t� ¼ t

tr
;

N1 ¼
mwcpw
mscps

; N2 ¼
acAc

_mmcps
and N3 ¼

asAs

_mmcps

where tr is the residence time of single-phase fluid in the

heat exchanger, tr ¼ L=u ¼ LqsAx= _mm ¼ ms= _mm, Tc and Ts;in
are both constant. Note that N1 is the ratio of the wall

thermal capacitance to the single-phase fluid thermal

capacitance, N3 ¼ NTUs is the number of transfer units

based on the single-phase side, and N2 ¼ ðacAc=
asAsÞNTUs is the NTUs multiplied by the ratio of the

thermal resistance ratio. Incorporating these dimen-

sionless quantities, the non-dimensional forms of Eqs.

(1) and (2) are obtained:

N1

oT �
w

ot�
þ N2ðT �

w � 1Þ þ N3ðT �
w � T �

s Þ ¼ 0 ð3Þ

oT �
s

ot�
þ oT �

s

ox�
¼ N3ðT �

w � T �
s Þ ð4Þ

3. Integral method

Integral methods [11] have been used in the analysis

of many situations but have not been used in recent

years because of the reliance on numerical analyses.

However, the approach is still useful. Integral methods

apply fundamental concepts and phenomenological re-

lations to an entire system, rather than just to a differ-

ential element. Thus, in the present situation, we

integrated the governing partial differential equations,

Eqs. (3) and (4), over the length of the heat exchanger:

N1

o
R 1

0
T �
w dx

�
� �

ot�
þ N2

Z 1

0

T �
w dx

�
�

� 1

�

þ N3

Z 1

0

T �
w dx

�
�

�
Z 1

0

T �
s dx

�
�

¼ 0 ð5Þ

o
R 1

0
T �
s dx

�
� �

ot�
þ ½T �

s ðx� ¼ 1Þ � T �
s ðx� ¼ 0Þ


¼ N3

Z 1

0

T �
w dx

�
�

�
Z 1

0

T �
s dx

�
�

ð6Þ

In order to evaluate the integrals appearing in Eqs. (5)

and (6), we have to assume the forms of the spatial

distributions of both the wall and single-phase fluid

temperatures. We assume that both temperature distri-

butions have the following forms:

T �
s ¼ T �0

s þ ðT �1
s � T �0

s Þf ðt�Þ ð7Þ

T �
w ¼ T �0

w þ ðT �1
w � T �0

w Þgðt�Þ ð8Þ

This assumption uses the known initial and final tem-

perature distributions as was done in Refs. [6,7], which

use first-order systems to approximate the transient

temperatures for both the fluids and wall(s). In our

model, we do not give the specific form of f ðt�Þ and

gðt�Þ, which are left to be determined.

The assumed behavior of Eqs. (7) and (8) must satisfy

three conditions: at t� ¼ 0, T �
s ¼ T �0

s , T �
w ¼ T �0

w ; at

t� ! 1, T �
s ¼ T �1

s , T �
w ¼ T �1

w and at x� ¼ 0, T �
s ¼ 0,

which are the initial, final, and inlet boundary condi-

tions, respectively. In Eqs. (7) and (8), f ðt�Þ and gðt�Þ are

Ts

Tw

Tc

Ts,in =T 0 Ts,out

L

x

Fig. 1. Schematic of two-fluid heat exchanger.
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only time functions, so we can reduce our system of

partial differential equations to two first-order ordinary

differential equations, which are more easily solved.

Below, two cases are given to explain this method.

3.1. Case 1

At time zero-minus, the whole system is at steady

state. At time zero, the constant temperature fluid un-

dergoes an instantaneous step change in temperature,

from T 0
c to T1

c . The single-phase fluid inlet temperature

is maintained constant at Ts;in. Thus, the initial condition
for the single-phase fluid and heat exchanger wall are

readily obtained from Eqs. (3) and (4) because the

transient terms disappear. Thus,

T �0
s ¼ T �0

c ð1� e�NTUx� Þ ð9Þ

T �0
w ¼ T �0

c 1

�
�NTU

N2

e�NTUx�
�

ð10Þ

where

T �0
c ¼ ðT 0

c � Ts;inÞ=ðT1
c � Ts;inÞ ð11Þ

where NTU is the number of transfer units:

NTU ¼ acAcasAs

_mmcpsðacAc þ asAsÞ
¼ N2N3

N2 þ N3

ð12Þ

(Note that wall thermal resistance can be incorporated

approximately into the solution by combining the wall

resistance with the convective resistance on either side of

the heat exchanger.)

The final steady-state temperature distributions, T �1
s

and T �1
w , are obtained by solving Eqs. (3) and (4) at the

final steady state:

T �1
s ¼ 1� e�NTUx� ð13Þ

T �1
w ¼ 1�NTU

N2

e�NTUx� ð14Þ

Substituting the initial and final steady-state conditions

(Eqs. (9), (10), (13) and (14)) into Eqs. (7) and (8), and

rearranging the equations, the single-phase fluid and

wall temperature distributions are obtained:

T �
s ¼ ð1� e�NTUx� Þff ðt�Þ þ T �0

c ½1� f ðt�Þ
g ð15Þ

T �
w ¼ 1

�
�NTU

N2

e�NTUx�
�
fgðt�Þ þ T �0

c ½1� gðt�Þ
g ð16Þ

Since T �0
c is a constant, ff ðt�Þ þ T �0

c ½1� f ðt�Þ
g and

fgðt�Þ þ T �0
c ½1� gðt�Þ
g are only time functions; thus, we

can describe these two terms as f 0ðt�Þ and g0ðt�Þ to

simplify Eqs. (15) and (16):

T �
s ¼ ð1� e�NTUx� Þf 0ðt�Þ ð17Þ

T �
w ¼ 1

�
�NTU

N2

e�NTUx�
�
g0ðt�Þ ð18Þ

Note that when f 0ðt� ¼ 0Þ ¼ g0ðt� ¼ 0Þ ¼ T �0
c and

f 0ðt� ¼ 1Þ ¼ g0ðt� ¼ 1Þ ¼ 1, the initial and final steady-

state temperature distributions, respectively, are satis-

fied. When x� ¼ 0, the inlet boundary condition is

satisfied.

Substituting Eqs. (17) and (18) into Eqs. (5) and (6),

carrying out the integration, and rearranging them, two

first-order ordinary differential equations are obtained:

df 0ðt�Þ
dt�

¼ C1f 0ðt�Þ þ C2g0ðt�Þ ð19Þ

dg0ðt�Þ
dt�

¼ D1f 0ðt�Þ þ D2g0ðt�Þ þ D3 ð20Þ

where

C1 ¼ �C2 ¼ �N3NTUðN2 � eÞ
N2ðNTU� eÞ ð21Þ

D1 ¼
ðN3 þ N2ÞðNTU� eÞ

N1ðN2 � eÞ ð22Þ

D2 ¼ �N2 þ N3

N1

ð23Þ

D3 ¼
N 2

2

N1ðN2 � eÞ ð24Þ

where e ¼ 1� e�NTU is the steady-state heat exchanger

effectiveness for a heat exchanger with a heat capacity

ratio of zero.

These two ordinary differential equations can be

solved, subject to the initial conditions, f 0ðt� ¼ 0Þ ¼
g0ðt� ¼ 0Þ ¼ T �0

c , and ðC1 � D2Þ2 þ 4D1C2 > 0 for all

situations. Thus, f 0ðt�Þ and g0ðt�Þ are obtained:

f 0ðt�Þ ¼ k2e
k1t� � k1e

k2 t�

k1 � k2

½1� T �0
c 
 þ 1 ð25Þ

g0ðt�Þ ¼ 1� ð1� T �0
c Þ½k2ðk1 � C1Þek1t� � k1ðk2 � C1Þek2t� 


C1ðk1 � k2Þ
ð26Þ

where

k1;2 ¼
ðC1 þ D2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1 � D2Þ2 þ 4D1C2

q
2

ð27Þ

Thus, T �
s (Eq. (17)) and T �

w (Eq. (18)) are now known

functions of space and time. Note that k1 6¼ k2 for all

conditions.

When T �0
c ¼ 0, the initial condition is a uniform

temperature distribution everywhere because T �0
s ¼

T �0
w ¼ 0, and the initial mass flow rate plays no role in

the solution. Hence, this is the classic ‘‘start up’’ situa-

tion. That is, at time zero, a step change in temperature
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is imposed to the constant temperature fluid, and the

single-phase fluid undergoes an instantaneous step

change in mass flow rate.

3.1.1. Evaluation of solution

For comparison to the approximate analytic solution

given in the previous section and in the following sec-

tions, the complete differential equations, Eqs. (3) and

(4), were solved numerically using the Modelica lan-

guage and a dynamic simulator, Dymola. Modelica is an

object-oriented modeling language, which can reuse

physical models, support a hierarchical structure, and

offer the feature of easy code maintenance by combining

properties from basic library components [16]. For

evaluation of the models, the simulation environment

Dymola (Dynamic Modeling Laboratory) is used [17].

The governing equations were discretized axially and

temporally. Grid independence in both space and time

were obtained by successive halving of the increments.

The results from the present numerical models were

validated against the numerical results of Romie [1] and

Roetzel and Xuan [3] for both a parallel flow heat ex-

changer and a counterflow heat exchanger, and the

agreement was excellent. Based on this benchmarking

exercise, we then used our numerical simulations to

validate our approximate analytic model.

As shown previously, the three coefficients in the

governing equations affect the transient response. Be-

cause the single-phase fluid may be a liquid or a gas, N1

can vary widely. In most of heat exchangers, NTU is less

than about 6 which limits the variations in N2 and N3.

Many combinations of N1, N2, and N3 were studied.

Because of space limitations, we show only typical re-

sults. Figs. 2–5 compare the results from the analytic

model and the numerical simulation for T �0
c ¼ 0. Figs. 2–

4 give the outlet temperature response for the single-

phase fluid and the wall for a range of N1, at three

different values of NTU. Generally, good agreement is

obtained. Fig. 5 shows the outlet temperature response

for the single-phase fluid and wall for a range of N2 and

N3 when N1 ¼ 1. Because the present solution is ob-

tained by solving the governing integral equations, Eqs.

(5) and (6), the governing differential equations, Eqs. (3)

and (4), are satisfied only on the average and may be

only approximately satisfied at each point. Thus, for

some combinations of N1, N2 and N3, the agreement

between the analytic and numeric solution degrades.

However, studies show that for most situations, the

differences between the analytic model and numeric so-

lutions are within a couple of percent, and even in the

poorer situations, the maximum differences are less than

15–20%, but the trends and steady-state times are still

modeled well.

Figs. 6 and 7 compare the results from the analytic

model and the numerical simulation for T �0
c ¼ 0:4. Fig. 6

shows the temperature distributions along the heat

exchanger for the single-phase fluid and the wall at

different times when N2 ¼ N3 ¼ 1ðNTU ¼ 0:5Þ and

N1 ¼ 300. The agreements are quite good not only at the

exit, but also for every location along the heat ex-

changer. Fig. 7 shows the temperature distributions

along the heat exchanger for the single-phase fluid at

different times for two different values of NTU and

N1 ¼ 300. The agreement is quite good over the whole

heat exchanger.

The accuracy of the integral method used in this

paper depends upon the choice of the assumptions for

the spatial distributions of the wall and single-phase

fluid temperatures. From the above studies, we can see

that the agreement between the analytic model and the

numerical simulation generally is quite good. Thus, we

can say that the assumptions we made in Eqs. (7) and (8)

are reasonable and suitable.

3.2. Case 2

A step change in the single-phase fluid flow rate is

imposed on a heat exchanger operating at a steady state.
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Fig. 2. Outlet fluid and wall temperature transients with

T �0
c ¼ 0 and NTU ¼ 0:5 (Case 1).
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Before the step change, the single-phase inlet mass flow

rate is _mm0. Eqs. (3) and (4) can be written as

N1

oT �
w

ot�
þ N 0

2 ðT �
w � 1Þ þ N 0

3 ðT �
w � T �

s Þ ¼ 0 ð28Þ

oT �
s

ot�
þ oT �

s

ox�
¼ N 0

3 ðT �
w � T �

s Þ ð29Þ

where N 0
2 ¼ ðacAcÞ=ð _mm0cpsÞ and N 0

3 ¼ ða0
sAsÞ=ð _mm0cpsÞ. At

time zero-minus, the whole system is at a steady state.

Thus, the initial conditions for single-phase fluid and

heat exchanger wall are obtained by solving Eqs. (28)

and (29):

T �0
s ¼ ð1� e�NTU0x� Þ ð30Þ

T �0
w ¼ 1

�
�NTU0

N 0
2

e�NTU0x�
�

ð31Þ

where NTU0 ¼ ðN 0
2N

0
3 Þ=ðN 0

2 þ N 0
3 Þ.

At time zero, the single-phase fluid undergoes an

instantaneous step change in mass flow rate, from _mm0 to

_mm1. The constant temperature fluid temperature and

single-phase fluid inlet temperature are maintained

constant at T1
c and Ts;in, respectively, and Eqs. (3) and

(4) can be written as:

N1

oT �
w

ot�
þ N1

2 ðT �
w � 1Þ þ N1

3 ðT �
w � T �

s Þ ¼ 0 ð32Þ

oT �
s

ot�
þ oT �

s

ox�
¼ N1

3 ðT �
w � T �

s Þ ð33Þ

where N1
2 ¼ ðacAcÞ=ð _mm1cpsÞ, N1

3 ¼ ða1
s AsÞ=ð _mm1cpsÞ.

The final steady-state temperature distributions, T �1
s

and T �1
w , are readily obtained from the above equations.

Thus,

T �1
s ¼ 1� e�NTU1x� ð34Þ

T �1
w ¼ 1�NTU1

N1
2

e�NTU1x� ð35Þ

where NTU1 ¼ ðN1
2 N1

3 Þ=ðN1
2 þ N1

3 Þ.
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Fig. 3. Outlet fluid and wall temperature transients with

T �0
c ¼ 0 and NTU ¼ 0:91 (Case 1).
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Fig. 4. Outlet fluid and wall temperature transients with

T �0
c ¼ 0 and NTU ¼ 5 (Case 1).
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The heat transfer coefficient on the constant fluid

side, ac, is assumed to remain constant before and after

the mass flow rate step change on the single-phase side.

However, the heat transfer coefficient for the single-

phase flow does change with the step change in mass

flow rate. Thus, we must consider how the three pa-

rameters N1, N2 and N3 are affected. Because neither

flow rate nor heat transfer coefficient are used in N1,

N1 does not change. For fully developed laminar flow,

in a constant shape duct, Nu¼ constant, so a1
s ¼ a0

s

and

N1
3

N 0
3

¼ N1
2

N 0
2

¼ _mm0

_mm1 ¼ 1

c
ð36Þ

where c ¼ _mm1= _mm0. For turbulent flow, using, for exam-

ple, the Colburn equation:

Nu ¼ 0:023Re0:8Pr1=3 ð37Þ

Thus,

a1
s

a0
s

¼ Re1

Re0

� �0:8

¼ u1

u0

� �0:8

¼ _mm1

_mm0

 !0:8

¼ c0:8 ð38Þ

N1
3

N 0
3

¼ a1
s _mm0

a0
s _mm1 ¼ _mm0

_mm1

� �0:2

¼ 1

c

� �0:2

and

N1
2

N 0
2

¼ _mm0

_mm1 ¼ 1

c

9>>>>>>=
>>>>>>;

ð39Þ

The relationships given in Eqs. (36) and (39) are used

only to find the values of N1
2 and N1

3 , but are not

needed to solve the governing Eqs. (34) and (35).

Using the initial and final steady-state conditions, we

can recast Eqs. (7) and (8) for the problem as:

T �
s ¼ ð1� e�NTU0x� Þ þ ðe�NTU0x� � e�NTU1x� Þf ðt�Þ ð40Þ
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Fig. 5. Outlet fluid and wall temperature transients with
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c ¼ 0, N1 ¼ 1:0 and various NTU (Case 1).
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the heat exchanger with T �0
c ¼ 0:4 and NTU ¼ 0:5 (Case 1).
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T �
w ¼ 1�NTU0

N 0
2

e�NTU0x�

þ NTU0

N 0
2

e�NTU0x�
�

�NTU1

N1
2

e�NTU1x�
�
gðt�Þ ð41Þ

Let f ðt� ¼ 0Þ ¼ gðt� ¼ 0Þ ¼ 0 and f ðt� ¼ 1Þ ¼ gðt� ¼
1Þ ¼ 1; thus, the initial and final steady-state tem-

perature distributions, respectively, are satisfied, and

when x� ¼ 0, the inlet boundary condition also is satis-

fied.

Using the final values of N1
2 and N1

3 , the integral

equations become

N1

oð
R 1

0
T �
w dx

�Þ
ot�

þ N1
2

Z 1

0

T �
w dx

�
�

� 1

�

þ N1
3

Z 1

0

T �
w dx

�
�

�
Z 1

0

T �
s dx

�
�

¼ 0 ð42Þ

o
R 1

0
T �
s dx

�
� �

ot�
þ ½T �

s ðx� ¼ 1Þ � T �
s ðx� ¼ 0Þ


¼ N1
3

Z 1

0

T �
w dx

�
�

�
Z 1

0

T �
s dx

�
�

ð43Þ

Substituting the assumed single-phase and wall temper-

ature distributions (Eqs. (40) and (41)) into Eqs. (42)

and (43), carrying out the integration, and rearranging

them, two first-order ordinary differential equations are

obtained:

df ðt�Þ
dt�

¼ C1f ðt�Þ þ C2gðt�Þ þ C3 ð44Þ

dgðt�Þ
dt�

¼ D1f ðt�Þ þ D2gðt�Þ þ D3 ð45Þ

where

C1 ¼
N1

3 e1=N1
2 � ðN1

3 =NTU0 � 1Þe0

e0=NTU0 � e1=NTU1 ð46Þ
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Fig. 7. Transient fluid temperature distributions along the

heat exchanger with T �0
c ¼ 0:4 and NTU ¼ 0:91 and NTU ¼ 5

(Case 1).
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NTU0 ¼ 0:5 and various c (Case 2).
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C2 ¼
N1

3 e0=N 0
2 � N1

3 e1=N1
2

e0=NTU0 � e1=NTU1 ð47Þ

C3 ¼
e0ðN1

3 =N 0
3 � 1Þ

e0=NTU0 � e1=NTU1 ð48Þ

D1 ¼
N1

3 ðe0=NTU0 � e1=NTU1Þ
N1ðe0=N 0

2 � e1=N1
2 Þ ð49Þ

D2 ¼ �ðN1
2 þ N1

3 Þ
N1

ð50Þ

D3 ¼ � e0N1
3 ½1=NTU0 � N1

2 =ðN 0
2NTU1Þ


N1ðe0=N 0
2 � e1=N1

2 Þ ð51Þ

where e0 ¼ 1� e�NTU0

and e1 ¼ 1� e�NTU1
.

These two ordinary differential equations can be

solved, subject to the initial conditions, f ðt� ¼ 0Þ ¼
gðt� ¼ 0Þ ¼ 0. Thus, f ðt�Þ and gðt�Þ are obtained

f ðt�Þ ¼ 1� ðk2 þ C3Þek1 t� � ðk1 þ C3Þek2 t�

ðk2 � k1Þ
ð52Þ

gðt�Þ ¼ 1� ðk2 þ C3Þðk1 � C1Þek1 t� � ðk1 þ C3Þðk2 � C1Þek2t�

C2ðk2 � k1Þ
ð53Þ

where k1;2 has the same definition as before (Eq. (27)).

Substituting Eqs. (52) and (53) into Eqs. (40) and

(41), T �
s and T �

w are obtained.

3.2.1. Evaluation of solution

Figs. 8 and 9 give the effect of different c on the outlet

temperature distribution for the single-phase fluid and

for the wall. When the mass flow rate of the single-phase

fluid undergoes a step change, the temperature response

for the single-phase fluid is very fast. As discussed

above, using the integral method, the governing equa-

tions are satisfied on the average, but may be only ap-

proximately satisfied at each point in the system [11].

Thus, at very short times, relatively large differences

exist between the analytic model and numeric solutions

for single-phase fluid. The agreement with the wall
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Fig. 9. Outlet fluid and wall temperature transients with

NTU0 ¼ 3 and various c (Case 2).
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Fig. 10. Transient fluid and wall temperature distributions

along the heat exchanger with NTU0 ¼ 0:91 and c ¼ 0:4

(Case 2).
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temperature is much better because it is affected more

slowly compared with the single-phase fluid. Fig. 10

shows the temperature distributions within the heat ex-

changer for the single-phase fluid and wall at different

times when N 0
2 ¼ 10, N 0

3 ¼ 1 (NTU ¼ 0:91), N1 ¼ 700

and c ¼ 0:4. The agreement is good, especially for wall

temperature as explained above.

4. Concluding remarks

The transient behavior of a heat exchanger in which

one fluid is single phase and the other has a constant

temperature has been investigated for the situation when

there is a step change in temperature and/or mass flow

rate. The transient temperature distributions in the sin-

gle-phase fluid and wall were obtained using an integral

method by assuming that the single-phase fluid and wall

temperatures can be expressed by a combination of

known initial and final temperature distributions and a

time function determined in the analysis. For two cases,

explicit analytic solutions were obtained and validated

by comparison against numerical simulation results over

a wide range of operating conditions. The results show

that this model covers most practical cases with very

good accuracy.

Because flow arrangement becomes irrelevant when

one of the fluids in a heat exchanger has a constant

temperature, the results in this paper are applicable to

counterflow, parallel flow, cross-flow, or any other heat

exchanger. The present analytic solutions can provide

good predictions for transient performance of such heat

exchangers, and, thus, provide good guidance for proper

control of heat exchangers. The solution method

employed in this paper may be extendable to heat

exchangers with two single-phase fluids. We are inves-

tigating that possibility.
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